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Abstract

We compute the scalar curvature of seven-dimensionalG2-manifolds admitting aG2-connection
with totally skew-symmetric torsion. We prove the formula for the general solution of the Killing
spinor equation and express the Riemannian scalar curvature of the solution in terms of the dilation
function and the NS 3-form field. In dimensionn = 7 the dilation function involved in the second
fermionic string equation has an interpretation as a conformal change of the underlying integrable
G2-structure into a cocalibrated one of pure typeW3.
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1. Introduction

Riemannian manifolds admitting parallel spinors with respect to a metric connection with
totally skew-symmetric torsion became a subject of interest in theoretical and mathematical
physics recently. One of the main reasons is that the number of preserved supersymmetries
in string theory depends essentially on the number of parallel spinors. In 10-dimensional
string theory, the Killing spinor equations with non-constant dilationΦ and the 3-form field
strengthH can be written in the following way[37] (see[16,22,23]):

∇Ψ = 0, (dΦ − 1
2H) · Ψ = 0, (∗)
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whereΨ is a spinor field and∇ a metric connection with totally skew-symmetric torsion
T = H . The existence of a parallel spinor imposes restrictions on the holonomy group since
the spinor holonomy representation has to have a fixed point. In the case of the torsion-free
metric connection (the Levi–Civita connection),the possible Riemannian holonomy groups
are known to be SU(n),Sp(n),G2,Spin(7) [28,39]. The Riemannian holonomy condition
imposes strong restrictions on the geometry and leads to the consideration of Calabi–Yau
manifolds, hyper-Kähler manifolds, parallelG2-manifolds and parallel Spin(7)-manifolds.
All of them are of great interest in mathematics (see[26] for detailed discussions) as well
as in high-energy physics and string theory[31]. However, it seems that the geometry of
these spaces is too restrictive for various problems in string theory[20,30,35]. One possible
generalization of Calabi–Yau manifolds, hyper-Kähler manifolds, parallelG2-manifolds
and parallel Spin(7)-manifolds are manifolds equipped with linear metric connections hav-
ing skew-symmetric torsion and holonomy contained in SU(n),Sp(n),G2,Spin(7). One
remarkable fact is that the existence (in small dimensions) of a parallel spinor with respect to
a metric connection∇ with skew-symmetric torsion determines the connection in a unique
way if its holonomy group is a subgroup of SU,Sp,G2, provided that some additional
differential conditions on the structure are fulfilled[16,37], and always in dimension 8 for
a subgroup of the group Spin(7) [21]. The case of 16-dimensional Riemannian manifolds
with Spin(9)-structure was investigated in[13], homogeneous models are discussed in[2].
The existence of∇-parallel spinors in dimensions 4–8 is studied in[10,16,17,21,22,37]. In
dimension 7, the first consequence is that the manifold should be aG2-manifold with an
integrableG2-structure[16], i.e., the structure group could be reduced to the groupG2 and
the corresponding 3-formω3 should obeyd ∗ ω3 = θ ∧ ∗ω3 for some special 1-formθ. In
this paper we study solutions to the Killing spinorequations (∗) in dimension 7 and the ge-
ometry of integrableG2-manifolds. We find a formula for the Riemannian scalar curvature
in terms of the fundamental 3-form. Our first main result is the following theorem.

Theorem 1.1. Let (M, g, ω3) be an integrableG2-manifold with the fundamental3-form
ω3. The Riemannian scalar curvatureScalg is given in terms of the fundamental3-formω3

by

Scalg = 1
18(dω

3, ∗ω3)2 + 2‖θ‖2 − 1
12‖T‖2 + 3δθ, (1.1)

whereθ andT are the Lee form and the torsion of the uniqueG2-connection given by

T = − ∗ dω3 + 1
6(dω

3, ∗ω3) · ω3 + ∗(θ ∧ ω3),

θ = −1
3 ∗ (∗dω3 ∧ ω3) = 1

3 ∗ (δω3 ∧ ∗ω3). (1.2)

We remark that the torsion formT was been computed in[16]. Returning to the Killing
spinorequations (∗), we present necessary and sufficient conditions for aG2-manifold to
be a solution to both of them. In fact we show that the dilation function arises from the Lee
1-form. Finally, we give a formula for the Riemannian scalar curvature of any solution to both
Killing spinor equations in dimension 7. Our second main result is the following theorem.

Theorem 1.2. In dimension7 the following conditions are equivalent:

(1) The Killing spinor equations(∗) admit a solution with dilationΦ.
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(2) There exists an integrableG2-structure(g, ω3) with closed Lee form, which is locally
conformally equivalent to a cocalibratedG2-structure of pure typeW3.

More precisely, the structure is determined by the equations:

d ∗ ω3 = θ ∧ ∗ω3, (dω3, ∗ω3) = 0, θ = −2dΦ (1.3)

and the NS3-formH = T is given by

T = − ∗ dω3 − 2 ∗ (dΦ ∧ ω3). (1.4)

The Riemannian scalar curvature is determined by

Scalg = 8 · ‖dΦ‖2 − 1
12 · ‖T‖2 − 6 · 	Φ, (1.5)

where	Φ = δdΦ is the Laplacian. The solution has constant dilation if and only if the
G2-structure is cocalibrated of pure typeW3.

Our proof relies on the existence theorem for aG2-connection with torsion, the Schrödinger–
Lichnerowicz formula for the connection with torsion (both established in[16]) and the spe-
cial properties of the Clifford action on the special parallel spinor.

2. General properties of G2-structures

Let us considerR7 endowed with an orientation and its standard inner product. Denote
an oriented orthonormal basis bye1, . . . , e7. We shall use the same notation for the dual
basis. We denote the monomialei ∧ ej ∧ ek by eijk . Consider the 3-formω3 onR

7 given by

ω3 = e127 + e135 − e146 − e236 − e245 + e347 + e567. (2.1)

The subgroup of SO(7) that fixesω3 is the exceptional Lie groupG2. It is a compact, simply
connected, simple Lie group of dimension 14[32]. The 3-formω3 corresponds to a real
spinor and, therefore,G2 is the isotropy group of a non-trivial real spinor. AG2-structureon
a 7-manifoldM7 is a reduction of the structure group of the tangent bundle to the exceptional
groupG2. This can be described geometrically by a nowhere vanishing differential 3-form
ω3 onM7, which can be locally written as(2.1). The 3-formω3 is called thefundamental
form of theG2-manifoldM7 (see[3]) and it determines the metric completely. The action
of G2 on the tangent space gives an action ofG2 on k-forms and we obtain the following
splitting [6,11]:

Λ1(M7) = Λ1
7, Λ2(M7) = Λ2

7 ⊕ Λ2
14, Λ3(M7) = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27,

where

Λ2
7 = {α ∈ Λ2(M7)| ∗ (α ∧ ω3) = 2α}, Λ2

14 = {α ∈ Λ2(M7)‖ ∗ (α ∧ ω3) = −α},
Λ3

7 = {∗(β ∧ ω3)|β ∈ Λ1(M7)}, Λ3
27={γ ∈ Λ3(M7)|γ ∧ ω3= 0, γ ∧ ∗ω3 = 0}.

Following [8] we consider the 1-formθ defined by

3θ = − ∗ (∗dω3 ∧ ω3) = ∗(δω3 ∧ ∗ω3). (2.2)
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We shall call this 1-form theLee formassociated with a givenG2-structure. If the Lee form
vanishes, then we shall call theG2-structurebalanced. The classification of the different
types ofG2-structures was worked out by Fernandez–Gray[11], and Cabrera used the Lee
form to characterize each of the 16 classes. AnintegrableG2-structure (or a structure of
typeW1 ⊕ W3 ⊕ W4) is characterized by the differential equation

d ∗ ω3 = θ ∧ ∗ω3

and acocalibratedG2-structure is defined by the condition

d ∗ ω3 = 0.

A cocalibratedG2-structure of pure typeW3 is characterized by the two conditionsd∗ω3 =
0, dω3 ∧ ω3 = 0. Then the following proposition follows immediately.

Proposition 2.1. If the Lee1-form is closed, then theG2-structure is locally conformal to
a balancedG2-structure.

We shall call locally conformally parallelG2-manifolds that are not globally conformally
parallelstrict locally conformally parallel.

Example 2.1. Any seven-dimensional oriented spin Riemannian manifold admits a certain
G2-structure, in general a non-parallel one (see for example[27]). The first known examples
of complete parallelG2-manifold were constructed by Bryant and Salamon[7], the first
compact examples by Joyce[24–26]. There are many known examples of compact nearly
parallelG2-manifolds:S7 [11], SO(5)/SO(3) [7,33], the Aloff–Wallach spacesN(g, l) =
SU(3)/U(1)g,l [9], any Einstein–Sasakian and any 3-Sasakian space in dimension 7[14,15].
There are also some non-regular 3-Sasakian manifolds (see[4,5]). Moreover, compact
nearly parallelG2-manifolds with large symmetry group are classified in[15]. Compact
integrable nilmanifolds are constructed and studied in[12]. Any minimal hypersurfaceN
in R

8 admits a cocalibratedG2-structure[11]. Moreover, the structure is parallel, nearly
parallel, cocalibrated of pure type if and only if the hypersurfaceN is totally geodesic,
totally umbilic or minimal, respectively.

3. Conformal transformations of G2-structures

We study the conformal transformation ofG2-structures (see[11]).

Proposition 3.1. Let ḡ = e2f · g, ω̄3 = e3f · ω3 be a conformal change of aG2-structure
(g, ω3) and denote bȳθ, θ the corresponding Lee forms, respectively. Then

θ̄ = θ + 4df. (3.1)

Proof. We have the relations

volḡ = e7f · volg, dω̄3 = e3f · (3df ∧ ω3 + dω3).
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We calculate

∗̄dω̄3 = e4f (∗dω3 + 3 ∗ (df ∧ ω3)), ∗̄dω̄3 ∧ ω̄3 = e7f (∗dω3 ∧ ω3 − 12∗ df),

where we used the general identity∗(ω3 ∧γ)∧ω3 = 4∗γ, which is valid for any 1-formγ.
Consequently, we obtain̄θ = −(1/3)∗̄(∗̄dω̄3 ∧ ω̄3) = −(1/3)(∗(∗dω3 ∧ω3)−12∗2 df) =
θ + 4df. �

Proposition 3.1allows us to find a distinguishedG2-structure on a compact seven-dimensional
G2-manifold.

Theorem 3.1. Let(M7, g, ω3) be a compact7-dimensionalG2-manifold. Then there exists
a unique(up to homothety) conformalG2-structureg0 = e2f · g, ω3

0 = e3f · ω3 such that
the corresponding Lee form is coclosed, δ0θ0 = 0.

Proof. We shall use the Gauduchon theorem for the existence of a distinguished metric
on a compact, Hermitian or Weyl manifold[18,19]. We shall use the expression of this
theorem in terms of a Weyl structure (see[38, Appendix 1]). We consider the Weyl mani-
fold (M7, g, θ,∇W) with the Weyl 1-formθ, where∇W is a torsion-free linear connection
on M7 determined by the condition∇Wg = θ ⊗ g. Applying the Gauduchon theorem
we can find, in a unique way, a conformal metricg0 such that the corresponding Weyl
1-form is coclosed with respect tog0. The key point is that, byProposition 3.1, the Lee
form transforms under conformal rescaling according to(3.1), which is exactly the trans-
formation of the Weyl 1-form under conformal rescaling of the metricḡ = e4f · g. Thus,
there exists (up to homothety) a unique conformalG2-structure(g0, ω

3
0) with coclosed

Lee form. �

We shall call theG2-structure with coclosed Lee formthe GauduchonG2-structure.

Corollary 3.1. Let (M7, g,Φ) be a compactG2-manifold and(g,Φ) be the Gauduchon
structure. Then the following formula holds:

∗(dδω3 ∧ ∗ω3) = ‖δω3‖2.

In particular, if the structure is integrable, then

∗(dδω3 ∧ ∗ω3) = 24‖θ‖2.

Proof. Using(2.2), we calculate that

0= 3 · δθ = ∗d(δω3 ∧ ∗ω3) = ∗(dδω3 ∧ ∗ω3 − ∗d ∗ ω3 ∧ d ∗ ω3)

= ∗(dδω3 ∧ ∗ω3 − ‖δω3‖2 · vol).

If the structure is integrable, then‖δω3‖2 = 24‖θ‖2. �

Corollary 3.2. On a compactG2-manifold with closed Lee form whose GauduchonG2-
structure is not balanced, the first Betti number satisfiesb1(M) ≥ 1.
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For integrableG2-manifolds one can define a suitable elliptic complex as well as coho-
mology groupsH̃ i(M7) (see[12]). The first cohomology group is given by

H̃1(M7) = {α ∈ Λ1(M7) : dα ∧ ∗ω3 = 0, d ∗ α = 0}.

Corollary 3.3. On a compact integrable manifold which is not globally conformally bal-
anced, one has̃b1 ≥ 1.

Proof. By the condition of the theorem the Gauduchon structure has a non-identically zero
Lee form. Then 0= δω3 = ∗(dθ ∧ ∗ω3), since the structure is integrable. Adding the
conditionδθ = 0, we obtaiñb1 ≥ 1. �

4. Connections with torsion, parallel spinors and Riemannian scalar curvature

The Ricci tensor of an integrableG2-manifold was expressed in principle by the structure
form ω3 in the paper[16]. Here we intend to find an explicit formula for the Riemannian
scalar curvature. Using the unique connection with skew-symmetric torsion preserving
the given integrableG2-structure found in[16], we apply the Schrödinger–Lichnerowicz
formula for the Dirac operator of a metric connection with totally skew-symmetric torsion
(see[16]) in order to derive the formula for the scalar curvature. First, let us summarize the
mentioned results from[16].

Theorem 4.1 (see[16]). Let (M7, g, ω3) be aG2-manifold. Then the following conditions
are equivalent:

(1) TheG2-structure is integrable, i.e., d ∗ ω3 = θ ∧ ∗ω3;
(2) There exists a unique linear connection∇ preserving theG2-structure with totally

skew-symmetric torsion T given by

T = − ∗ dω3 + 1
6(dω

3, ∗ω3) · ω3 + ∗(θ ∧ ω3). (4.1)

Furthermore, for any integrableG2-structure, the projectionsπ4
1(dω

3), π4
7(dω

3) of dω3

ontoΛ4
1 andΛ4

7, respectively, are given by

π4
1(dω

3) = 1
7 · (dω3, ∗ω3) ∗ ω3, π4

7(dω
3) = 3

4 · θ ∧ ω3,

there exists a∇-parallel spinorΨ0 corresponding to the fundamental formω3 and the
Clifford action of the torsion3-form on it is

T · Ψ0 = 7
6 · λ · Ψ0 − θ · Ψ0, λ = −1

7 · (dω3, ∗ω3). (4.2)

Keeping in mindProposition 3.1, we obtain the following corollary.

Corollary 4.1. The Lee form of an integrableG2-structure is given by∗(ω3 ∧ T) = −θ.
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Corollary 4.2. The torsion3-form T of∇ changes by a conformal transformation(go =
e2f · g, ω3

o = e3f · ω3) of theG2-structure by

To = e4f · (T + ∗df ∧ ω3).

LetD and Scal be the Dirac operator and the scalar curvature of theG2-connection defined
as usually by

D =
7∑

i=1

ei · ∇ei , Scal=
7∑

i,j=1

R∇(ei, ej, ej, ei).

The scalar curvature Scalg of the metric is given by (see[16,22])

Scalg = Scal+ 1
4‖T‖2. (4.3)

The 4-formσT defined by the formula

σT = 1

2

7∑
i=0

(ei�T) ∧ (ei�T)

plays an important role in the integrability conditions for∇-parallel spinors.

Theorem 4.2 (see[16]). Let Ψ be a parallel spinor with respect to a metric connection
∇ with totally skew-symmetric torsion T on a Riemannian spin manifoldMn. Then the
following formulas hold

3 · dT · Ψ − 2 · σT · Ψ + Scal· Ψ = 0,

D(T · Ψ) = dT · Ψ + δT · Ψ − 2 · σT · Ψ.

Proof of Theorem 1.1. LetΨ0 be the∇-parallel spinor corresponding to the fundamental
3-formω3. Then the Riemannian Dirac operatorDg and the Levi–Civita connection∇g act
onΨ0 by the rule

∇g
XΨ0 = −1

4(X�T) · Ψ0, DgΨ0 = −3
4 · T · Ψ0 = −7

8 · λ · Ψ0 + 3
4 · θ · Ψ0,

(4.4)

where we usedTheorem 4.1. We are going to apply the well known Schrödinger–Lichnerowicz
formula[29,36]:

(Dg)2 = 	g + 1
4 · Scalg, 	g = −

n∑
i=1

(∇g
ei
∇g
ei

− ∇g
∇ei

ei
)

to the∇-parallel spinor fieldΨ0. The formula(4.4)yields that

(Dg)2Ψ0 = −7
8 · Dg(λ · Ψ0) + 3

4 · Dg(θ · Ψ0)

= (49
64 · λ2 + 9

16 · ‖θ‖2 + 3
4 · δθ) · Ψ0 − 7

8 · dλ · Ψ0 + 3
4 · dθ · Ψ0

+ 3
8 · (θ�T) · Ψ0, (4.5)
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where we used the general identityDgθ+θDg = dθ+δθ−2∇θ. We compute the Laplacian
	g. Fix a normal coordinate system at a pointp ∈ Mn such that(∇eiei)p = 0, use(4.4)
as well as the properties of the Clifford multiplication. Then one obtains the following
formula[21]:

	gΨ0 = 1

4
·

n∑
i=1

(
∇ei (ei�T) · Ψ0 − 1

16
· (ei�T) · (ei�T) · Ψ0

)

= −1

4
· δT · Ψ0 − 1

16
·
(

2σT − 1

2
· ‖T‖2

)
· Ψ0. (4.6)

Substituting(4.5) and (4.6)into the SL-formula, multiplying the obtained result byΨ0 and
taking the real part, we arrive at

(49
64 · λ2 + 9

16 · ‖θ‖2 + 3
4 · δθ) · ‖Ψ0‖2

= ( 1
32

2 + 1
4 · Scalg) · ‖Ψ0‖2 − 1

8 · (σT · Ψ0, Ψ0). (4.7)

On the other hand, using(4.2), we obtain

D(T · Ψ0)=D

(
7

6
· λ · Ψ0 − θ · Ψ0

)
=

n∑
i=1

ei · ∇ei

(
7

6
· λ · Ψ0 − θ · Ψ0

)

= 7

6
· dλ · Ψ0 − (d∇θ + δθ) · Ψ0,

whered∇ is the exterior derivative with respect to theG2-connection∇. Now,Theorem 4.2
gives(7/6)dλ · Ψ0 − d∇θ · Ψ0 − δθ · Ψ0 = dT · Ψ0 − 2σT · Ψ0 + δT · Ψ0. Multiplying the
latter equality byΨ0 and taking the real part, we obtain−δθ · ‖Ψ0‖2 = (dT · Ψ0, Ψ0) −
(2σT · Ψ0, Ψ0). Consequently,Theorem 4.2and(4.3) imply

(−3 · δθ − 1
4 · ‖T‖2 + Scalg) · ‖Ψ0‖2 + 4 · (σT · Ψ0, Ψ0) = 0. (4.8)

Finally, (4.7) and (4.8)imply (1.1)and the proof ofTheorem 1.1is complete. �

Corollary 4.3. On a cocalibratedG2-manifold of pure type the Riemannian scalar curva-
ture is given by

Scalg = − 1
12 · ‖dω3‖2.

Proof. In the case of a cocalibratedG2-structure of pure type, the torsion 3-formT =
− ∗ dω3. The claim follows fromTheorem 1.1. �

Using the results in[11] we derive immediately the following formula, which is essentially
the reformulated Gauss equation.

Corollary 4.4. LetM7 be a hypersurface inR8 with second fundamental form S and mean
curvature H. Then the Riemannian scalar curvature onM7 is given by the formula:

Scalg = 49
18 · ‖H‖2 − 1

12 · ‖S0‖2, (4.9)
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whereS0 is the image of the traceless part of the second fundamental form via the isomor-
phismS2

0(R
7) → Λ3

27. In particular, if M is a minimal hypersurface, then

Scalg = − 1
12‖S0‖2 ≤ 0. (4.10)

Theorem 4.3. LetM7 be a compact, connected spin7-manifold with a fixed orientation.
If it admits a strictly locally conformally parallelG2-structure, then:

(1) M admits a Riemannian metricgY with strictly positive constant scalar curvature.
(2) The first Betti number is at least 1, b1(M) ≥ 1.

Proof. We have‖T‖2 = (3/2)‖θ‖2 since the structure is locally conformally parallel.
Then,Theorem 1.1leads to the formula:

Scalg = 15
8 · ‖θ‖2 + 3 · δθ. (4.11)

According to the solution of the Yamabe conjecture[34] there is a metricgY = e2f · g in
the conformal class ofg with constant scalar curvature. Consider the locally conformally
parallelG2-structure(gY = e2f · g, ω3

Y = e3f · ω3). The equality(4.11)also holds for the
structure(gY , ω3

Y ) and an integration overM gives

ScalgY · vol(gY ) = 11

6

∫
M

‖θ‖2d vol > 0,

since the structure is strictly locally conformally parallel. The second assertion is a conse-
quence ofCorollary 3.2. �

5. Solutions to the Killing spinor equations in dimension 7

We consider the Killing spinorequations (∗) in dimension 7. The existence of a∇-parallel
spinor is equivalent to the existence of a∇-parallel integrableG2-structure and the 3-form
field strengthH = T is given by(4.1). We now investigate the second Killing spinor
equation (∗).

Proof of Theorem 1.2. Let Ψ be an arbitrary∇-parallel such that(dΦ − T) · Ψ = 0. The
spinor fieldΨ defines a secondG2-structureω3

0 such thatΨ = Ψ0 is the canonical spinor
field. Since the connection preserves the spinor fieldΨ , it preserves theG2-structureω3

0,
too. On the other hand, the connection preservingω3

0 is unique. Consequently, the torsion
T0 coincides with the torsion formT and for theG2-structureω3

0 we have

∇Ψ0 = 0, (dΦ − 1
2T0) · Ψ0 = 0.

The Clifford actionT0 · Ψ0 depends only on the(Λ3
1 ⊕ Λ3

7)-part ofT0. Using(4.1)and the
algebraic formulas

∗(γ ∧ ω3
0) · Ψ0 = −γ�(∗ω3

0) · Ψ0 = −4 · γ · Ψ0, ω3
0 · Ψ0 = −7 · Ψ0
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we calculate

T0 · Ψ0 = −θ · Ψ0 − 1
6 · (dω3

0, ∗ω3
0) · Ψ0. (5.1)

Comparing with the second Killing spinorequation (∗) we find 2·dΦ = −β, (dω3
0, ∗ω3

0) = 0
which completes the proof. �

As a corollary we obtain the result from[20], which states that any solution to both
equations (∗) has necessarily the NS three formH = T given by(1.4). A more precise
analysis usingProposition 3.1andTheorem 1.1of the explicit solutions constructed in[20]
shows that these solutions are conformally equivalent to a cocalibrated structure of pure type.
In other words, the multiplication of theG2-structures(g±, ω3±) by (eΦ ·g±,e(3/2)Φ ·ω3±)
is a new example of a cocalibratedG2-structure of pure typeW3, and it is a solution to
the Killing spinor equations with constant dilation. The same conclusions are valid for the
solutions constructed in[1,30,35].

Theorem 1.2allows us to construct a lot of compact solutions to the Killing spinor equa-
tions. If the dilation is a globally defined function, then any solution is globally conformally
equivalent to a cocalibratedG2-structure of pure type. For example, any conformal trans-
formation of a compact seven-dimensional manifold with a Riemannian holonomy group
G2 constructed by Joyce[24,25] is a solution with non-constant dilation. Another source
of solutions are conformal transformations of the cocalibratedG2-structures of pure type
W3 induced on any minimal hypersurface inR

8. Summarizing, we obtain:

Corollary 5.1. Any solution(M7, g, ω3) to the Killing spinor equations(∗) in dimension7
with non-constant globally defined dilation functionΦ comes from a solution with constant
dilation by a conformal transformation(g = eΦ · g0, ω

3 = e(3/2)Φ · ω3
0), where(g0, ω

3
0) is

a cocalibratedG2-structure of pure typeW3.
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